
Theor Chem Account (2008) 121:187–195
DOI 10.1007/s00214-008-0464-1

REGULAR ARTICLE

An exponential multi-reference wavefunction ansatz:
connectivity analysis and application to N2

Michael Hanrath

Received: 5 May 2008 / Accepted: 3 July 2008 / Published online: 30 July 2008
© Springer-Verlag 2008

Abstract A connectivity analysis for the exponential multi-
reference wavefunction ansatz (MRexpT) (J Chem Phys
123:84102, 2005) is carried out. Assuming a complete model
space and separating interactions carrying active labels the
cluster operator carrying no active labels is fully connected.
The valence (active) part of the MRexpT cluster operator,
however remains disconnected. Consequently, the MRexpT
correlation energy scales linearly with the number of non-
active electrons as single reference coupled cluster does while
MRexpT additionally can treat multi reference cases. There-
fore, MRexpT should be well suited to be applied to a large
number of molecular applications. Its applicability to peri-
odic systems with multi-reference unit cells however seems
to be limited. An application to the triple bond breaking of
the N2 molecule is presented.

Keywords Coupled-cluster · Multi-reference ·
State selective · Electronic structure · MRCC

1 Introduction

The single-reference (SR) coupled-cluster (CC) methods
[1–3] have proven to be the standard tool of wavefunction-
based ab initio quantum chemistry. Their CCSD [4] and
CCSD(T) [5] variants provide an efficient tool to carry out
electronic structure calculations routinely. Despite this suc-
cess SRCC methods have a limited applicability. There are
many problems (near degeneracy, dissociation, excited states)
which typically require an explicit multi-reference (MR) treat-
ment. A direct application of SR-based methods becomes
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very inefficient for such problems due to the need to include
very high body terms in the cluster operator.

Despite of many efforts the generalization of the SRCC
approach to an MR model space, there is still no ultimate
MRCC so far. There is a large number of MRCC approaches
in the literature reflecting only the difficulty of this problem.
There are two major crucial problems for any MRCC theory:
(1) the ambiguity of the genealogy of the projection
manifold and (2) the connectivity (size extensivity) of the
equations. Both problems were solved by the state universal
(SUMRCC) [6,7] and valence universal (VUMRCC) ansätze
[8–12] by considering simultaneously several n-particle or
n, n − 1, . . .particle states, respectively. However, this
achievement is affected by the occurrence of intruder states
or a still restricted applicability limiting the success of these
approaches. Consequently, the research on MRCC methods
continued.

In addition to the state universal and valence universal
approaches the literature offers many different state selec-
tive approaches. Among these are the dressed configura-
tion interaction (CI)-based ansätze of Malrieu and coworkers
[13–15], SUMRCC based ansätze as [16,17] of Mukher-
jee and coworkers and Brillouin–Wigner-based ansätze of
Pittner, Hubac and coworkers [18–20].

Another state-specific ansatz is that of Oliphant and
Adamowicz [21] and Piecuch et al. [22] (single-reference for-
malism multi-reference coupled cluster, SRMRCC) and vari-
ants [23–26]. The former have been initially implemented by
several groups [27–29]. Efficient implementations are avail-
able [30–32]. The ansatz may be interpreted as a recast of
an SRCC method into an MR method by adapting the exci-
tation manifold to span an MR space. However, this recast
makes one reference special and causes symmetry broken
solutions [30,33]. Recent further developments [34] try to
address the symmetry issues. However, the wavefunction is
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still not fully cured of symmetry problems and the connec-
tivity of the equations is in question.

Recently Evangelista et al. [35,36] reviewed and evaluated
various MRCC ansätze for higher than singles/doubles base
excitations for various model systems. However, they did not
include the MRexpT ansatz [33,37] in their considerations.
This has now successfully been carried out [38].

The goal of this paper is to show that at the separation
of interactions containing active labels the non-active part of
the MRexpT cluster operator is connected. This goes beyond
the the proof of size-consistency given in [33]. It is very
important for the numerical accuracy of the method for large
systems. The ability of the MRexpT approach to break bonds
or to describe excited states has been already given [33,37,
38].

The outline of this paper is as follows: in Sect. 2, we
introduce a convenient notation according to the literature.
Section 3 briefly summarizes the MRexpT wavefunction
ansatz and shows the shape of the wave function for a sim-
ple example explicitly. Section 4 reformulates the MRexpT
equations to make them accessible to a connectivity analysis.
Finally in Sect. 5, an application of the MRexpT ansatz to the
dissociation of the nitrogen molecule is given and compared
with MRCI and SRMRCC approaches.

2 Notation and spaces

We shall introduce the following common notational con-
ventions [39,33]: orbitals occupied in any/a few/none of the
reference determinants are called occupied (core) /active
(valence)/virtual orbitals.1 They are denoted as O, A, V,
respectively. Furthermore we introduce arbitrary orbitals
p, q, . . . ∈ W = O ∪ A ∪ V. Reference determinants are
denoted by the Greek letters |λ〉, |µ〉, . . . ∈ P. They are
associated to the reference-specific orbital spaces Oµ and
Vµ with

∏
p∈Oµ

â†
p|〉 = |µ〉 and Vµ = W\Oµ. It is O =

⋂
µ∈P Oµ, V = ⋂

µ∈P Vµ and we get A = W\(O ∪ V).

Based on the fermion creation and annihilation operators â†

and â we define excitation operators τ̂ ∈ T as τ̂ = â†
a1 . . .

â†
am âim . . . âi1 . Given two sets of orbitals X and Y we define

the standard set of excitation operators

Tm(X, Y) =
⋃

iν∈X,aν∈Y

â†
a1

. . . â†
am

âim . . . âi1 (1)

at excitation level m. If m is of no special concern it is skipped.
Using Eq. (1) the cluster operators are given as T̂µ = ls Tµ =∑

τ̂i ∈Tµ
ti τ̂i .

1 According to the original literature [12], we also use the terms “core”
and “valence” as synonyms to “occupied” and “active”, respectively.
This should not be confused with the term “core” in the sense of “frozen”
as non-correlated orbitals.

Assuming P to be complete (CAS space) and prohibiting
excitations to other references Tµ becomes

T
CAS
µ = T(Oµ, Vµ)\T(Oµ, A) (2)

and implies

〈λ|eT̂ CAS
µ µ〉 = 0, ∀λ�=µ (3)

since T
CAS
µ contains at least one virtual orbital from Vµ\A

which cannot be annihilated anymore later. Consequently the
overlap with other P-space determinants is zero.

Equation (3) will be crucial to eliminate E from the
MRexpT equations conveniently, making the introduction of
a complete active space essential.

The reference determinants |µ〉 span the P-space and the
substituted determinants |α〉 span the Q-space with P∩Q=∅.
Q may be more explicitly given as Qµn specifying a cer-
tain reference and a certain substitution level n according to
Qµ,n = ⋃

τ̂∈Tµn
τ̂ |µ〉.

3 The MRexpT ansatz

As the state universal ansatz [6] the MRexpT ansatz [33]
uses a reference-specific cluster operator. The wave function
ansatz reads

|�〉 =
∑

µ

cµeT̂µ |µ〉 (4)

and the cluster operators are given as

T̂µ = φ(cµ)
∑

τ̂µ,i ∈Tµ

tτ̂µ,i |µ〉τ̂µ,i . (5)

In contrast to the state universal coupled-cluster formalism
which uses an excitation and reference-based amplitude
indexing (tτ̂µ,i ) Eq. (5) contains a determinant-based ampli-
tude indexing (tτ̂µ,i |µ〉) with the sign rule t−|β〉 = −t|β〉 applied.
The reference phase compensation factor φ(z) is given by
φ(z) = e−i arg z, z ∈ C, and guarantees the potential com-
pleteness of Eq. (4). One should note that this phase factor
is given by the reference coefficient cµ itself and does not
introduce any new degree of freedom.

Figure 1 shows the genealogy of the excitations and deter-
minants for a simple example. The upper and lower part (with
respect to a mirror line at half height) belong to the |i p〉 and
|iq〉 reference, respectively. The dotted excitations on the
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Fig. 1 Example: excitation graph of MRexpT including products
(dotted lines)

right-hand side of Fig. 1 correspond to the second factor of
possible product excitations. Applying the Eqs. (4) and (5) to
the simple example given in Fig. 1 the wave function reads
for cµ ∈ R

|�〉 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cip

ciq

|cip| t|ap〉
(|cip| + |ciq |) t|ib〉

|ciq | t|aq〉
cipt|ap〉t|ib〉 + ciq t|aq〉t|ib〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

|i p〉
|iq〉
|ap〉
|ib〉
|aq〉
|ab〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (6)

We note that for product excitations in the last line the factor
1
2! of the exponential cancels with the 2! possible paths per
reference to reach |ab〉 (τ̂i→a τ̂p→b + τ̂p→b τ̂i→a) which is in
common with the usual SRCC. Furthermore we see the sign
factor φ causing absolute values in c at the linear level.

Inserting Eq. (4) into the Schrödinger equation we get

Ĥ
∑

µ

cµeT̂µ |µ〉 = E
∑

µ

cµeT̂µ |µ〉. (7)

Projecting Eq. (7) from the left onto 〈ρ| we obtain a system
of equations linear in the reference coefficients cµ and non
linear in the amplitudes t|α〉

∑

µ

cµ〈ρ|Ĥ − E |eT̂µµ〉 = 0, ∀〈ρ|. (8)

Additionally we fix the norm of the reference coefficients by

∑

µ

|cµ|2 = 1. (9)

In case of a single reference case Eq. (9) collapses to the
usual intermediate normalization of single reference-coupled
cluster theory. Eqs. (8) and (9) together form a set of ord(P)+
ord(Q)+1 equations for the unknowns cµ and tτ̂µ,i |µ〉 and E ,
respectively. Alternatively, one may separate an eigenvalue
problem for the P space requiring a two step process.

4 Connectivity analysis

In this section, we shall analyze the connectivity properties
of the MRexpT ansatz. Although the ansatz of MRexpT is
conceptually very simple the explicit proof of connectivity is
cumbersome. This is in line with other proofs of connectivity
in the literature [6,16,17].

It should be stated that the simple occurrence of E in the
Eq. (8) does not necessarily prohibit the connectivity of the
equations a priori. The unlinked (not similarity transformed)
form of single reference coupled cluster shares the occur-
rence of E in the projections. Nevertheless, under certain
conditions it turns out to be connected. As usual for the frag-
ile and subtle matter of connectivity things are a bit more
involved.

Unfortunately, a direct analysis of MRexpT by means of
a perturbative expansion turns out to be a rather sophisti-
cated task since E enters the expansions and the amplitudes
are coupled in a complicated way through Eq. (5). There-
fore, we shall proceed as follows: First of all we recast the
MRexpT equations eliminating E and continue by setting up
the perturbative expansion of the cluster operator T̂µ without
any further assumptions. Then we introduce the core/valence
separation causing significant simplifications to the recasted
MRexpT equations. Finally, these results are transferred to
the perturbative expansion which will easily be seen to be
connected for the core part of T̂µ.

4.1 Algebraic reformulation of the MRexpT equations

Solving Eq. (8) for E we obtain

E =
∑

µ cµ〈ρ|ĤeT̂µµ〉
∑

µ cµ〈ρ|eT̂µµ〉
(10)

(3)=
∑

µ

cµ

cλ

〈λ|ĤeT̂µµ〉 (11)

where we chose ρ = λ ∈ P for convenience since the sum
in the denominator will collapse for this case according to
Eq. (3).
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Inserting Eq. (11) into Eq. (8) for ρ = α ∈ Q we get

0 =
∑

µ

cµ

⎡

⎣〈α|
↑

ĤeT̂µµ〉 − 〈α|eT̂µµ〉
∑

µ′

cµ′

cµ

〈µ|ĤeT̂µ′ µ′〉
⎤

⎦

(12)

=
∑

µ

cµ

⎡

⎢
⎣〈α|eT̂µe−T̂µ ĤeT̂µµ〉 − 〈α|eT̂µµ〉〈µ|ĤeT̂µµ〉

︸ ︷︷ ︸
Aµ

−〈α|eT̂µµ〉
∑

µ′ �=µ

cµ′

cµ

〈µ|ĤeT̂µ′ µ′〉
︸ ︷︷ ︸

Bµ

⎤

⎥
⎦ (13)

=
∑

µ

cµ

⎡

⎣〈α|e−T̂µ ĤeT̂µµ〉+
∞∑

i=1

1

i ! 〈α|T̂ i
µ

↑
e−T̂µ ĤeT̂µµ〉

−Aµ − Bµ

⎤

⎦ (14)

=
∑

µ

cµ

⎡

⎢
⎢
⎣〈α|e−T̂µ ĤeT̂µµ〉

+
∞∑

i=1

1

i ! 〈α|T̂ i
µµ〉

︸ ︷︷ ︸

〈α|eT̂ µµ〉

〈µ|e−T̂µ ĤeT̂µµ〉 − Aµ

︸ ︷︷ ︸
0

−Bµ

+
∞∑

i=1

∞∑

j=1

∑

|ω〉∈Qµj

1

i ! 〈α|T̂ i
µω〉〈ω|e−T̂µ ĤeT̂µµ〉

︸ ︷︷ ︸
Cµ

⎤

⎥
⎥
⎦

(15)

0 =
∑

µ

cµ

[
〈α|e−T̂µ ĤeT̂µµ〉 − Bµ + Cµ

]
(16)

using the following algebraic operations:

Eq. (12)→Eq. (13): insertion of 1 = eT̂µe−T̂µ at the arrow
marker and splitting the sum over µ′ with respect to
µ′ = µ and µ′ �= µ. We introduce the shorthands Aµ :=
〈α|eT̂µµ〉〈µ|ĤeT̂µµ〉 and Bµ := 〈α|eT̂µµ〉∑

µ′ �=µ

cµ′
cµ

〈µ|ĤeT̂µ′ µ′〉.
Eq. (13)→Eq. (14): expanding the first eT̂µ of Eq. (13) into

a Taylor series in T̂ i
µ and splitting with respect to i = 0

and i > 0.
Eq. (14)→Eq. (15): insertion of a complete basis at the

arrow marker according to 1 = ∑
ω |ω〉〈ω| = ∑∞

j=0

∑
ω∈Qµj

|ω〉〈ω| with Qµj consisting of j-fold substi-
tuted determinants with respect to |µ〉. Finally, we split
the summation into the reference and the rest according
to 1 = |µ〉〈µ| + ∑∞

j=1
∑

ω∈Qµj
|ω〉〈ω|. We introduce

the shorthand Cµ := ∑∞
i=1

∑∞
j=1

∑
|ω〉∈Qµj

1
i ! 〈α|T̂ i

µω〉
〈ω|e−T̂µ ĤeT̂µµ〉.

Eq. (15)→Eq. (16): since it is 〈α|T̂ 0
µµ〉 = 0 we may write

∑∞
i=1

1
i ! 〈α|T̂ i

µµ〉 = 〈α|eT̂ µµ〉 and as 〈µ|e−T̂µ ĤeT̂µµ〉 =
〈µ|ĤeT̂µµ〉 the second sum in Eq. (15) cancels Aµ.

Finally, we conclude that Eq. (16) and the original MRexpT
(Eq. (8)), although looking quite different, are fully equiva-
lent since we did not make any approximations.

However, Eq. (16) is now ready to be analyzed with respect to
connectivity properties by means of a perturbative analysis.

4.2 Perturbative expansion

In order to analyze the connectivity properties of T̂ in Eq. (16)
we will expand T̂ into a perturbation series. Starting from

Ĥ = Ĥ0 + V̂ (17)

we assume all determinants to be eigenfunctions of Ĥ0, mak-
ing the representation of Ĥ0 diagonal

Ĥ0 =
∑

p∈W

εpâ†
pâp (18)

with excitation rank 0. V̂ is a two-particle operator

V̂ = 1

4

∑

pqrs∈W

vpq,rs â†
pâ†

q âs âr (19)

and given by V̂ = Ĥ − Ĥ0. Introducing the short hand nota-

tion ε|α〉 = 〈α|H0α〉 we split the term 〈α|e−T̂µ ĤeT̂µµ〉 of
Eq. (16) into its Ĥ0 and V̂ part:

0 =
∑

µ∈Pα

|cµ| t|α〉(ε|α〉 − ε|µ〉)

+
∑

µ

cµ

[
〈α|e−T̂µ V̂ eT̂µµ〉 − Bµ + Cµ

]
(20)

introducing Pα = {µ ∈ P | α ∈ Qµ} to simplify the Ĥ0 term

of Eq. (20) as it is 〈α|e−T̂µ Ĥ0eT̂µµ〉 = 0, ∀µ�∈Pα
. Further-

more, we used the identity 〈α|(Ĥ0 + [Ĥ0, T̂µ] + · · · )µ〉 =
t|α〉(ε|α〉 − ε|µ〉) since (1) 〈α|Ĥ0µ〉 = 0 as Ĥ0 does not carry
an excitation and (2) it is 〈α|[Ĥ0, T̂µ]µ〉 = t|α〉(ε|α〉 − ε|µ〉)
and (3) higher commutators vanish since only one T̂µ may
be connected to Ĥ0.
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Solving Eq. (20) for t|α〉 yields:

t|α〉 =
∑

µ cµ

[
〈α|e−T̂µ V̂ eT̂µµ〉 − Bµ + Cµ

]

∑
µ∈Pα

|cµ|(ε|µ〉 − ε|α〉)
. (21)

It is

T̂λ = φ(cλ)
∑

|α〉∈Qλ

t|α〉τ̂|λ〉→|α〉. (22)

In order to assemble T̂λ according to Eq. (22) we append
τ̂|λ〉→|α〉 to Eq. (21) and sum over |α〉 ∈ Qλ.

T̂λ

φ(cλ)
=

∑

|α〉∈Qλ

∑
µ cµ

[
〈α|e−T̂µ V̂ eT̂µµ〉 − Bµ + Cµ

]

∑
µ∈Pα

|cµ|(ε|µ〉 − ε|α〉)
τ̂|λ〉→|α〉

(23)

Once more we conclude that in deriving Eq. (23) we made no
approximation so far. However, since the term Bµ in Eq. (23)
is likely to contain disconnected parts they will likewise show
up in T̂ .

4.3 Core connectivity

To analyze the connectivity properties of MRexpT we decom-
pose the full Hamiltonian and the cluster operator into their
core (carrying no active orbital) and valence (carrying some
active orbital) part

Ĥ = Ĥv + Ĥv (24)

T̂ = T̂ v + T̂ v. (25)

The related implications on the many body spaces are
discussed in the appendix. Since Eq. (24) implies the core
and the valence system not to interact we may exploit the
already proven size consistency of MRexpT [33] and restrict
the further analysis to the core Hamiltonian. To this end we
split the summation over |α〉 ∈ Qλ in Eq. (23) according to
Eq. (25) with respect to its core and valence parts and get

T̂ v
λ + T̂ v

λ = φ(cλ)

⎡

⎢
⎣

∑

|α〉∈Qv
λ

. . .

. . .
+

∑

|α〉∈Qv
λ

. . .

. . .

⎤

⎥
⎦ . (26)

Returning to Eq. (16) in the framework of the core
Hamiltonian we substitute Ĥ by Ĥv. Introducing the
shorthand notation Bv

µ = Bµ|Ĥ→Ĥv and Cv
µ correspond-

ingly Eq. (16) reads

0 =
∑

µ

cµ

[
〈α|e−T̂µ ĤveT̂µµ〉 − Bv

µ + Cv
µ

]
. (27)

Now, considering Eq. (27) in projections onto |α〉 ∈ Q
v
λ only

we shall achieve significant and crucial simplifications by
exploitation of Eqs. (35) and (3). An analysis of the addends

within the large brace of Eq. (27) while limiting the projection
to |α〉 ∈ Q

v
λ yields:

〈α|e−T̂µ(V̂ v + Ĥv
0 )eT̂µµ〉: since V̂ v does not carry any

valence labels while Ĥv
0 does not carry any substitution

at all we may apply Eq. (35) to find only the term µ = λ

to survive as e−T̂µ does not contain deexcitations.
Bv

µ: it is Bv
µ = 〈α|eT̂µµ〉∑

µ′ �=µ

cµ′
cµ

〈µ|ĤveT̂µ′ µ′〉. Since

Ĥv does not carry any valence excitation while eT̂µ′ does
not excite from one reference to another due to Eq. (3),
Bv

µ vanishes completely.

Cv
µ: 〈α|T̂ i

µω〉 may be decomposed into 〈α|T̂ i
µτ̂µ→ωµ〉. The

latter vanishes for µ �= λ since T̂ i
µ and τ̂µ→ω contain

excitations from the same set and the compound prod-
uct excitation may not contain the same active label for
creators and annihilators at the same time.

Summarizing, we conclude that the sum over µ in Eq. (27)
collapses to a single λ while Bv

µ vanishes completely:

0 = 〈α|e−T̂λ ĤveT̂λλ〉 + Cv
λ, ∀α∈Qv

λ
(28)

Introducing Dωλ := 〈ω|e−T̂λ ĤveT̂λλ〉 Eq. (28) becomes

0 = Dαλ +
∞∑

i, j=1

∑

|ω〉∈Qλ j

1

i ! 〈α|T̂ i
λω〉Dωλ

︸ ︷︷ ︸
R

, ∀α∈Qv
λk

. (29)

where we specified the substitution level k of the projecting
determinants in Q

v
λk explicitly.

Equation (29) is now completely analogous to the sin-
gle reference unlinked coupled cluster case and we shall
briefly analyze the conditions under which the term R van-
ishes: Since T̂ is a pure excitation operator the sum over j
does actually not carry on until infinity but is bounded by k
decreased by the minimal excitation level of T̂ . Obviously,
in analogy to the single reference unlinked-coupled cluster
equations for a specific j , Dωλ with |ω〉 ∈ Qλ j reflects the
j-fold amplitude projection of the linked equations. Now
one may assemble consecutive projection levels recursively
in the following manner: in the singles projection the term
〈α|T̂ i

λω〉 vanishes due to the above mentioned summation
restriction on j . Consequently the unlinked singles projection
matches the linked one and is accordingly solved. At the dou-
bles projection level the term 〈α|T̂ i

λω〉 does no longer vanish.
However, since Dωλ reflects the singles projection equations
(as it is 1 = j < k = 2) which are already solved it will van-
ish anyway and we may proceed to higher excitation levels.
Obviously, for this recursive chain to work we must not step
into a projection level which is not already solved. Therefore,
Q has to be closed with respect to deexcitations from T

†, that
is τ̂ †|α〉 ∈ Q, ∀τ̂∈T,|α〉∈Q (cf. [40]).
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Consequently, a sufficient condition for R in Eq. (29) to
vanish is that T̂ contains a consecutive sequence of excitation
levels (e.g. S, SD, SDT, . . .).

Reiterating the perturbative expansion Eq. (23) (assuming
R = 0) and exploiting |α〉 ∈ Q

v
λ ⇒ Pα = {|λ〉}, collapsing

the sum in the denominator we finally arrive at

T̂ v
λ = φ(cλ)

∑

|α〉∈Qv
λ

cλ〈α|e−T̂λ V̂ veT̂λλ〉
|cλ|(εv|λ〉 − εv|α〉)

τ̂|λ〉→|α〉

=
∑

|α〉∈Qv
λ

〈α|e−T̂λ V̂ veT̂λλ〉
(εv|λ〉 − εv|α〉)

τ̂|λ〉→|α〉. (30)

which exactly resembles the corresponding expression of the
linked form of single reference coupled cluster theory and is
easily seen to be connected.

We conclude that the assumption of a complete model
space and the separation of the Hamiltonian according to
Eq. (24) enabled us to prove the connectivity of the core part
of the cluster operator making the MRexpT ansatz scaling
linearly with the number of core electrons.

To summarize the MRexpT ansatz is connected as single
reference coupled cluster within the non-active part while it is
size consistent (including the active part, of course) and able
to dissociate bonds. However, MRexpT lacks full connec-
tivity within the active part and therefore misses the correct
scaling description of the pure valence and the core-valence
interaction part. Nevertheless, if one considers the number
and location of the valence electrons to be fixed and consid-
ers Ncore → ∞ the ratio core/valence becomes large making
the (not correctly scaling) core-valence interaction negligible
and the whole energy size extensive.

Additionally MRexpT can describe size intensive proper-
ties correctly (e.g. dissociation of a bond on a long polymer)
as long as it does not require valence extensivity. It should
be noted that for common molecular applications connec-
tivity within the core part is expected to be more important
than connectivity within the valence part since the number of
core electrons may grow rather quickly while the number of
valence electrons typically does not grow with the size of the
molecule that fast. For solids containing a multi-reference
unit cell, however, one may also encounter rapidly increas-
ing valence spaces. In this case core connectivity is expected
to be not sufficient.

5 Application: dissociation of N2

Finally we report on the ground state potential energy surface
of the dissociation of N2 calculated with MRCI, SRMRCC
[21,22], and MRexpT.

The natural reference space to break the triple bond is
made up by the 2 × 3 p-electrons from the atomic nitro-

Table 1 N2, 1�+
g ground state, cc-PVDZ basis set, all p-electrons

correlated, 7�+
u orbitals used, r in Bohr, FCI energies in Hartree, MRCI,

SRMRCC and MRexpT energy differences with respect to FCI in micro-
Hartree

r FCI MRCI SRMRCC MRexpT

1.5 −108.487 961 3,774 −97 214

1.75 −108.975 817 3,518 181 434

2 −109.118 617 3,148 528 675

2.25 −109.117 266 2,346 698 701

2.5 −109.062 128 1,800 667 591

3 −108.936 811 1,395 662 507

3.5 −108.859 925 1,101 594 435

4 −108.831 689 752 385 299

4.5 −108.824 479 534 250 174

5 −108.822 632 442 198 117

10 −108.821 243 380 178 79

20 −108.821 240 380 178 79

100 −108.821 240 380 179 79

NPE – 3,394 795 622

gen forming a CAS(6 e−, 6 × p) space. The calculations
were carried out using MOLCAS [41] with an interface [42]
to generate the MO-transformed one- and two-electron inte-
grals. Using a cc-PVDZ [43] basis we set up two different
sets of CAS(6 e−, 6 × p) space orbitals leaving the 1s and
2s orbitals inactive:

(i) 17�+
u excited state orbitals (actually consisting of a

single determinant)
(ii) X1�+

g ground state orbitals.

In the following correlation calculations we used the same
CAS space as reference space and left the 1s and 2s orbitals
frozen due to implementational limitations. This set up may
be considered as a worst case scenario for MRexpT since
there are no inactive orbitals in the correlating calculation.
Nevertheless, MRexpT performs very well completing previ-
ous studies [33,37,38] containing non-empty inactive spaces.

Table 1 and Fig. 2 show the results for MRCI, SRM-
RCC and MRexpT employing 7�+

u orbitals while Table 2
and Fig. 3 show the results for the 1�+

g ground state orbitals.
Discussing the results from the 7�+

u orbitals first we see
from Table 1 MRCI to have a very significant NPE of 3394
µEH . The MRCI energies become especially poor for small
r . SRMRCC has an NPE of 795 µEH which is smaller by
a factor of 4 than that of MRCI. The largest errors appear
near the equilibrium geometry while they become less for
smaller r . However, in Fig. 2 we see the energies to drop
below the zero line turning from underestimation to overes-
timation of the correlation energy. Although coupled cluster
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Fig. 2 N2, 1�+
g ground state, cc-PVDZ basis set, all p-electrons cor-

related, 7�+
u orbitals used, r in Bohr, energy differences with respect

to FCI

Table 2 N2, 1�+
g ground state, cc-PVDZ basis set, all p-electrons

correlated, ground state 1�+
g orbitals used, r in Bohr, FCI energies in

Hartree, MRCI, SRMRCC and MRexpT energy differences with respect
to FCI in micro-Hartree

r FCI MRCI SRMRCC MRexpT

1.5 −108.505 480 704 374 369

1.75 −108.995 919 738 352 347

2 −109.141 085 757 330 322

2.25 −109.138 848 759 316 299

2.5 −109.081 766 754 318 287

3 −108.949 436 746 374 285

3.5 −108.866 194 706 398 265

4 −108.834 089 575 304 209

4.5 −108.825 390 467 222 138

5 −108.823 011 418 189 104

10 −108.821 243 380 178 79

20 −108.821 240 380 178 79

100 −108.821 240 380 179 79

NPE – 379 220 290

in its standard projected form is of course not variational
the correlation energies are usually underestimated. From
our experience we know that the accuracy of the calculated
energies typically decreases when dropping below the full
CI energies. The MRexpT results show a similar behavior
as the SRMRCC results while they perform slightly better
in terms of the NPE and the maximum deviation from full
CI. The NPE is 622 µEH being about a factor of 5 smaller
than those of MRCI. In Fig. 2 we see the maximum error

Fig. 3 N2, 1�+
g ground state, cc-PVDZ basis set, all p-electrons cor-

related, 1�+
g ground state orbitals used, r in Bohr, energy differences

with respect to FCI

for MRexpT to appear at smaller r leaving the correlation
energy still underestimated for r = 1.5 Bohr.

Employing the ground state orbitals we see from Table 2
the overall errors to be much smaller for all considered meth-
ods. Now, also MRCI with an NPE of 379 µEH performs
rather accurate due to the small number of correlated elec-
trons although the coupled cluster methods are still about
a factor of two more accurate. SRMRCC has the smallest
NPE of 220 µEH (in comparison to 290 µEH for MRexpT)
while MRexpT shows throughout all considered geometries
lower overall errors. Considering Fig. 3 we see MRCI and
SRMRCC to have a rather significant slope around r =
3.5 Bohr where the orbitals rearrange to assemble the atomic
system. While SRMRCC shows an artificial maximum at
r = 3.5 Bohr the MRexpT energies are less affected by the
orbital rotations and remain smooth.

6 Conclusion

A connectivity analysis of the MRexpT ansatz has been pre-
sented. Assuming a complete active space the connectivity
of the core part of the cluster operator upon the separation
of interactions carrying active and non-active orbital labels
has been proven algebraically. This is an important and non-
trivial result. It goes beyond the proof of size consistency
given in [33] as size consistency is not sufficient for core
extensivity. The accuracy of correlated calculations for a
growing number of particles is insured by connectivity (that
is extensivity) not by consistency.

Consequently, MRexpT preserves the connectivity of the
single-reference coupled cluster ansatz within the non-active
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part while it is at the same time size consistent for direct
product reference spaces. However, connectivity does not
hold for substitutions containing active orbitals. MRexpT is
able to break bonds, describe potential energy surfaces and
excited states as shown for BeH2, CH2, Li2 and nH2 in [33],
H4 and H8 in [37], and ground state of N2 in this work. The
MRexpT results are very close to full CI and compare very
well to other MRCC ansätze from the literature as shown in
[38,35] and this work.

Appendix

We define pure core excitation spaces as well as their com-
plements and corresponding excitation manifolds as

Q
v
µ = Qµ \

⋃

λ�=µ

Qλ (31)

Q
v
µ = Qµ ∩

⋃

λ�=µ

Qλ (32)

T
v = T(O, V) (33)

T
v
µ = Tµ \ T

v (34)

with Q
v
µ ∪ Q

v
µ = Qµ and

⋃
τ̂∈Tv τ̂ |µ〉 = Q

v
µ and⋃

τ̂∈Tv
µ

τ̂ |µ〉 = Q
v
µ The involved many body spaces are

shown in Fig. 4.
We conclude that Eq. (2) implies

〈α|eT̂µµ〉 = 0, ∀α∈Qv
λ
, λ �= µ (35)

which plays an important role in the proof of core extensiv-

ity. Equation (35) states that eT̂µ does not contain excitations
corresponding to the dashed arrow in Fig. 4. To see this we
consider a |µ〉 ∈ P and an |α〉 ∈ Q

v
λ and λ �= µ. Conse-

quently, it is |α〉 = . . . â†
a âi â

†
x ây |µ〉 with a ∈ Vµ, i ∈ Oµ,

and x, y ∈ A. That is: we need (at least) one creator and one

Fig. 4 Reference and excited spaces with core/valence separation

annihilator from A leading from |µ〉 to |λ〉. However, Eq. (2)
rules out T̂ to contain any active creators ⇒ Eq. (35) holds.

It should be remarked that validity of Eq. (35) is not strictly
tied to the completeness of P but may be shown to hold at
weaker assumptions.
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